3.52 \(\int \frac {(c g+d g x)^2}{(A+B \log (e (\frac {a+b x}{c+d x})^n))^2} \, dx\)

Optimal. Leaf size=38 \[ \text {Int}\left (\frac {(c g+d g x)^2}{\left (B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )+A\right )^2},x\right ) \]

[Out]

Unintegrable((d*g*x+c*g)^2/(A+B*ln(e*((b*x+a)/(d*x+c))^n))^2,x)

________________________________________________________________________________________

Rubi [A]  time = 0.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \[ \int \frac {(c g+d g x)^2}{\left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )^2} \, dx \]

Verification is Not applicable to the result.

[In]

Int[(c*g + d*g*x)^2/(A + B*Log[e*((a + b*x)/(c + d*x))^n])^2,x]

[Out]

c^2*g^2*Defer[Int][(A + B*Log[e*((a + b*x)/(c + d*x))^n])^(-2), x] + 2*c*d*g^2*Defer[Int][x/(A + B*Log[e*((a +
 b*x)/(c + d*x))^n])^2, x] + d^2*g^2*Defer[Int][x^2/(A + B*Log[e*((a + b*x)/(c + d*x))^n])^2, x]

Rubi steps

\begin {align*} \int \frac {(c g+d g x)^2}{\left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )^2} \, dx &=\int \left (\frac {c^2 g^2}{\left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )^2}+\frac {2 c d g^2 x}{\left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )^2}+\frac {d^2 g^2 x^2}{\left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )^2}\right ) \, dx\\ &=\left (c^2 g^2\right ) \int \frac {1}{\left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )^2} \, dx+\left (2 c d g^2\right ) \int \frac {x}{\left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )^2} \, dx+\left (d^2 g^2\right ) \int \frac {x^2}{\left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )^2} \, dx\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.00, size = 0, normalized size = 0.00 \[ \int \frac {(c g+d g x)^2}{\left (A+B \log \left (e \left (\frac {a+b x}{c+d x}\right )^n\right )\right )^2} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[(c*g + d*g*x)^2/(A + B*Log[e*((a + b*x)/(c + d*x))^n])^2,x]

[Out]

Integrate[(c*g + d*g*x)^2/(A + B*Log[e*((a + b*x)/(c + d*x))^n])^2, x]

________________________________________________________________________________________

fricas [A]  time = 1.03, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {d^{2} g^{2} x^{2} + 2 \, c d g^{2} x + c^{2} g^{2}}{B^{2} \log \left (e \left (\frac {b x + a}{d x + c}\right )^{n}\right )^{2} + 2 \, A B \log \left (e \left (\frac {b x + a}{d x + c}\right )^{n}\right ) + A^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*g*x+c*g)^2/(A+B*log(e*((b*x+a)/(d*x+c))^n))^2,x, algorithm="fricas")

[Out]

integral((d^2*g^2*x^2 + 2*c*d*g^2*x + c^2*g^2)/(B^2*log(e*((b*x + a)/(d*x + c))^n)^2 + 2*A*B*log(e*((b*x + a)/
(d*x + c))^n) + A^2), x)

________________________________________________________________________________________

giac [A]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d g x + c g\right )}^{2}}{{\left (B \log \left (e \left (\frac {b x + a}{d x + c}\right )^{n}\right ) + A\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*g*x+c*g)^2/(A+B*log(e*((b*x+a)/(d*x+c))^n))^2,x, algorithm="giac")

[Out]

integrate((d*g*x + c*g)^2/(B*log(e*((b*x + a)/(d*x + c))^n) + A)^2, x)

________________________________________________________________________________________

maple [A]  time = 0.26, size = 0, normalized size = 0.00 \[ \int \frac {\left (d g x +c g \right )^{2}}{\left (B \ln \left (e \left (\frac {b x +a}{d x +c}\right )^{n}\right )+A \right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((d*g*x+c*g)^2/(B*ln(e*((b*x+a)/(d*x+c))^n)+A)^2,x)

[Out]

int((d*g*x+c*g)^2/(B*ln(e*((b*x+a)/(d*x+c))^n)+A)^2,x)

________________________________________________________________________________________

maxima [A]  time = 0.00, size = 0, normalized size = 0.00 \[ -\frac {b d^{3} g^{2} x^{4} + a c^{3} g^{2} + {\left (3 \, b c d^{2} g^{2} + a d^{3} g^{2}\right )} x^{3} + 3 \, {\left (b c^{2} d g^{2} + a c d^{2} g^{2}\right )} x^{2} + {\left (b c^{3} g^{2} + 3 \, a c^{2} d g^{2}\right )} x}{{\left (b c n - a d n\right )} B^{2} \log \left ({\left (b x + a\right )}^{n}\right ) - {\left (b c n - a d n\right )} B^{2} \log \left ({\left (d x + c\right )}^{n}\right ) + {\left (b c n - a d n\right )} A B + {\left (b c n \log \relax (e) - a d n \log \relax (e)\right )} B^{2}} + \int \frac {4 \, b d^{3} g^{2} x^{3} + b c^{3} g^{2} + 3 \, a c^{2} d g^{2} + 3 \, {\left (3 \, b c d^{2} g^{2} + a d^{3} g^{2}\right )} x^{2} + 6 \, {\left (b c^{2} d g^{2} + a c d^{2} g^{2}\right )} x}{{\left (b c n - a d n\right )} B^{2} \log \left ({\left (b x + a\right )}^{n}\right ) - {\left (b c n - a d n\right )} B^{2} \log \left ({\left (d x + c\right )}^{n}\right ) + {\left (b c n - a d n\right )} A B + {\left (b c n \log \relax (e) - a d n \log \relax (e)\right )} B^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*g*x+c*g)^2/(A+B*log(e*((b*x+a)/(d*x+c))^n))^2,x, algorithm="maxima")

[Out]

-(b*d^3*g^2*x^4 + a*c^3*g^2 + (3*b*c*d^2*g^2 + a*d^3*g^2)*x^3 + 3*(b*c^2*d*g^2 + a*c*d^2*g^2)*x^2 + (b*c^3*g^2
 + 3*a*c^2*d*g^2)*x)/((b*c*n - a*d*n)*B^2*log((b*x + a)^n) - (b*c*n - a*d*n)*B^2*log((d*x + c)^n) + (b*c*n - a
*d*n)*A*B + (b*c*n*log(e) - a*d*n*log(e))*B^2) + integrate((4*b*d^3*g^2*x^3 + b*c^3*g^2 + 3*a*c^2*d*g^2 + 3*(3
*b*c*d^2*g^2 + a*d^3*g^2)*x^2 + 6*(b*c^2*d*g^2 + a*c*d^2*g^2)*x)/((b*c*n - a*d*n)*B^2*log((b*x + a)^n) - (b*c*
n - a*d*n)*B^2*log((d*x + c)^n) + (b*c*n - a*d*n)*A*B + (b*c*n*log(e) - a*d*n*log(e))*B^2), x)

________________________________________________________________________________________

mupad [A]  time = 0.00, size = -1, normalized size = -0.03 \[ \int \frac {{\left (c\,g+d\,g\,x\right )}^2}{{\left (A+B\,\ln \left (e\,{\left (\frac {a+b\,x}{c+d\,x}\right )}^n\right )\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*g + d*g*x)^2/(A + B*log(e*((a + b*x)/(c + d*x))^n))^2,x)

[Out]

int((c*g + d*g*x)^2/(A + B*log(e*((a + b*x)/(c + d*x))^n))^2, x)

________________________________________________________________________________________

sympy [A]  time = 0.00, size = 0, normalized size = 0.00 \[ g^{2} \left (\int \frac {c^{2}}{A^{2} + 2 A B \log {\left (e \left (\frac {a}{c + d x} + \frac {b x}{c + d x}\right )^{n} \right )} + B^{2} \log {\left (e \left (\frac {a}{c + d x} + \frac {b x}{c + d x}\right )^{n} \right )}^{2}}\, dx + \int \frac {d^{2} x^{2}}{A^{2} + 2 A B \log {\left (e \left (\frac {a}{c + d x} + \frac {b x}{c + d x}\right )^{n} \right )} + B^{2} \log {\left (e \left (\frac {a}{c + d x} + \frac {b x}{c + d x}\right )^{n} \right )}^{2}}\, dx + \int \frac {2 c d x}{A^{2} + 2 A B \log {\left (e \left (\frac {a}{c + d x} + \frac {b x}{c + d x}\right )^{n} \right )} + B^{2} \log {\left (e \left (\frac {a}{c + d x} + \frac {b x}{c + d x}\right )^{n} \right )}^{2}}\, dx\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((d*g*x+c*g)**2/(A+B*ln(e*((b*x+a)/(d*x+c))**n))**2,x)

[Out]

g**2*(Integral(c**2/(A**2 + 2*A*B*log(e*(a/(c + d*x) + b*x/(c + d*x))**n) + B**2*log(e*(a/(c + d*x) + b*x/(c +
 d*x))**n)**2), x) + Integral(d**2*x**2/(A**2 + 2*A*B*log(e*(a/(c + d*x) + b*x/(c + d*x))**n) + B**2*log(e*(a/
(c + d*x) + b*x/(c + d*x))**n)**2), x) + Integral(2*c*d*x/(A**2 + 2*A*B*log(e*(a/(c + d*x) + b*x/(c + d*x))**n
) + B**2*log(e*(a/(c + d*x) + b*x/(c + d*x))**n)**2), x))

________________________________________________________________________________________